Every time I think I know what's going on, suddenly there's another layer of complications.
2017年1月31日星期二
2017年1月29日星期日
Simple SAS codes to understand set loop and order duplicated cases.
data try;
input pid value;
datalines;
1 1
1 3
1 5
2 1
2 2
3 1
3 2
3 6
3 8
;
run;
data try2;
set try;
by pid;
episode+1;
if first.pid then episode=1;
run;
input pid value;
datalines;
1 1
1 3
1 5
2 1
2 2
3 1
3 2
3 6
3 8
;
run;
data try2;
set try;
by pid;
episode+1;
if first.pid then episode=1;
run;
2017年1月11日星期三
Spectral decomposition
A<-matrix(c(2,1,1,2),nrow=2,ncol=2)
A
# [,1] [,2]
#[1,] 2 1
#[2,] 1 2
E<-eigen(A)
E
#$values
#[1] 3 1
#$vectors
# [,1] [,2]
#[1,] 0.7071068 -0.7071068
#[2,] 0.7071068 0.7071068
c1<-c(E$vectors[1,1],E$vectors[2,1])
c1
#[1] 0.7071068 0.7071068
c2<-c(E$vectors[1,2],E$vectors[2,2])
c2
#[1] -0.7071068 0.7071068
Q1<-c1%*%t(c1)
Q2<-c2%*%t(c2)
3*Q1+1*Q2
# [,1] [,2]
#[1,] 2 1
#[2,] 1 2
A
# [,1] [,2]
#[1,] 2 1
#[2,] 1 2
E<-eigen(A)
E
#$values
#[1] 3 1
#$vectors
# [,1] [,2]
#[1,] 0.7071068 -0.7071068
#[2,] 0.7071068 0.7071068
c1<-c(E$vectors[1,1],E$vectors[2,1])
c1
#[1] 0.7071068 0.7071068
c2<-c(E$vectors[1,2],E$vectors[2,2])
c2
#[1] -0.7071068 0.7071068
Q1<-c1%*%t(c1)
Q2<-c2%*%t(c2)
3*Q1+1*Q2
# [,1] [,2]
#[1,] 2 1
#[2,] 1 2
2016年12月5日星期一
2016年11月24日星期四
Use R to solve linear euqations
https://cran.r-project.org/web/packages/matlib/vignettes/linear-equations.html
Michael Friendly
2016-09-16
This vignette illustrates the ideas behind solving systems of linear equations of the form Ax=b where
A is anm×n matrix of coefficients form equations inn unknownsx is ann×1 vector unknowns,x1,x2,…xn b is anm×1 vector of constants, the “right-hand sides” of the equations
The general conditions for solutions are:
- the equations are consistent (solutions exist) if
r(A|b)=r(A) - the solution is unique if
r(A|b)=r(A)=n - the solution is underdetermined if
r(A|b)=r(A)<n
- the solution is unique if
- the equations are inconsistent (no solutions) if
r(A|b)>r(A)
We use
c( R(A), R(cbind(A,b)) )
to show the ranks, and all.equal( R(A), R(cbind(A,b)) )
to test for consistency.library(matlib) # use the package
Equations in two unknowns
Each equation in two unknowns corresponds to a line in 2D space. The equations have a unique solution if all lines intersect in a point.
Two consistent equations
A <- matrix(c(1, 2, -1, 2), 2, 2)
b <- c(2,1)
showEqn(A, b)
## 1*x1 - 1*x2 = 2
## 2*x1 + 2*x2 = 1
c( R(A), R(cbind(A,b)) ) # show ranks
## [1] 2 2
all.equal( R(A), R(cbind(A,b)) ) # consistent?
## [1] TRUE
Plot them:
plotEqn(A,b)
## x1 - x2 = 2
## 2*x1 + 2*x2 = 1
Three consistent equations
For three (or more) equations in two unknowns, r(A)≤2 , because r(A)≤min(m,n) . The equations will be consistent if r(A)=r(A|b) , which means that whatever linear relations exist among the rows of A are the same as those among the elements of b .
A <- matrix(c(1,2,3, -1, 2, 1), 3, 2)
b <- c(2,1,3)
showEqn(A, b)
## 1*x1 - 1*x2 = 2
## 2*x1 + 2*x2 = 1
## 3*x1 + 1*x2 = 3
c( R(A), R(cbind(A,b)) ) # show ranks
## [1] 2 2
all.equal( R(A), R(cbind(A,b)) ) # consistent?
## [1] TRUE
Plot them:
plotEqn(A,b)
## x1 - x2 = 2
## 2*x1 + 2*x2 = 1
## 3*x1 + x2 = 3
Three inconsistent equations
A <- matrix(c(1,2,3, -1, 2, 1), 3, 2)
b <- c(2,1,6)
showEqn(A, b)
## 1*x1 - 1*x2 = 2
## 2*x1 + 2*x2 = 1
## 3*x1 + 1*x2 = 6
c( R(A), R(cbind(A,b)) ) # show ranks
## [1] 2 3
all.equal( R(A), R(cbind(A,b)) ) # consistent?
## [1] "Mean relative difference: 0.5"
An approximate solution is sometimes available using a generalized inverse.
x <- MASS::ginv(A) %*% b
x
## [,1]
## [1,] 2
## [2,] -1
Plot the equations. You can see that each pair of equations has a solution, but all three do not have a common, consistent solution.
plotEqn(A,b, xlim=c(-2, 4))
## x1 - x2 = 2
## 2*x1 + 2*x2 = 1
## 3*x1 + x2 = 6
points(x[1], x[2], pch=15)
Equations in three unknowns
Each equation in three unknowns corresponds to a plane in 3D space. The equations have a unique solution if all planes intersect in a point.
Three consistent equations
A <- matrix(c(2, 1, -1,
-3, -1, 2,
-2, 1, 2), 3, 3, byrow=TRUE)
colnames(A) <- paste0('x', 1:3)
b <- c(8, -11, -3)
showEqn(A, b)
## 2*x1 + 1*x2 - 1*x3 = 8
## -3*x1 - 1*x2 + 2*x3 = -11
## -2*x1 + 1*x2 + 2*x3 = -3
Are the equations consistent?
c( R(A), R(cbind(A,b)) ) # show ranks
## [1] 3 3
all.equal( R(A), R(cbind(A,b)) ) # consistent?
## [1] TRUE
Solve for x .
solve(A, b)
## x1 x2 x3
## 2 3 -1
solve(A) %*% b
## [,1]
## x1 2
## x2 3
## x3 -1
inv(A) %*% b
## [,1]
## [1,] 2
## [2,] 3
## [3,] -1
Another way to see the solution is to reduce A|b to echelon form. The result is I|A−1b , with the solution in the last column.
echelon(A, b)
## x1 x2 x3
## [1,] 1 0 0 2
## [2,] 0 1 0 3
## [3,] 0 0 1 -1
echelon(A, b, verbose=TRUE, fractions=TRUE)
##
## Initial matrix:
## x1 x2 x3
## [1,] 2 1 -1 8
## [2,] -3 -1 2 -11
## [3,] -2 1 2 -3
##
## row: 1
##
## exchange rows 1 and 2
## x1 x2 x3
## [1,] -3 -1 2 -11
## [2,] 2 1 -1 8
## [3,] -2 1 2 -3
##
## multiply row 1 by -1/3
## x1 x2 x3
## [1,] 1 1/3 -2/3 11/3
## [2,] 2 1 -1 8
## [3,] -2 1 2 -3
##
## multiply row 1 by 2 and subtract from row 2
## x1 x2 x3
## [1,] 1 1/3 -2/3 11/3
## [2,] 0 1/3 1/3 2/3
## [3,] -2 1 2 -3
##
## multiply row 1 by 2 and add to row 3
## x1 x2 x3
## [1,] 1 1/3 -2/3 11/3
## [2,] 0 1/3 1/3 2/3
## [3,] 0 5/3 2/3 13/3
##
## row: 2
##
## exchange rows 2 and 3
## x1 x2 x3
## [1,] 1 1/3 -2/3 11/3
## [2,] 0 5/3 2/3 13/3
## [3,] 0 1/3 1/3 2/3
##
## multiply row 2 by 3/5
## x1 x2 x3
## [1,] 1 1/3 -2/3 11/3
## [2,] 0 1 2/5 13/5
## [3,] 0 1/3 1/3 2/3
##
## multiply row 2 by 1/3 and subtract from row 1
## x1 x2 x3
## [1,] 1 0 -4/5 14/5
## [2,] 0 1 2/5 13/5
## [3,] 0 1/3 1/3 2/3
##
## multiply row 2 by 1/3 and subtract from row 3
## x1 x2 x3
## [1,] 1 0 -4/5 14/5
## [2,] 0 1 2/5 13/5
## [3,] 0 0 1/5 -1/5
##
## row: 3
##
## multiply row 3 by 5
## x1 x2 x3
## [1,] 1 0 -4/5 14/5
## [2,] 0 1 2/5 13/5
## [3,] 0 0 1 -1
##
## multiply row 3 by 4/5 and add to row 1
## x1 x2 x3
## [1,] 1 0 0 2
## [2,] 0 1 2/5 13/5
## [3,] 0 0 1 -1
##
## multiply row 3 by 2/5 and subtract from row 2
## x1 x2 x3
## [1,] 1 0 0 2
## [2,] 0 1 0 3
## [3,] 0 0 1 -1
Plot them. x=(2,3,−1)
plotEqn3d
uses rgl
for 3D graphics. If you rotate the figure, you’ll see an orientation where all three planes intersect at the solution point, plotEqn3d(A,b, xlim=c(0,4), ylim=c(0,4))
Three inconsistent equations
A <- matrix(c(1, 3, 1,
1, -2, -2,
2, 1, -1), 3, 3, byrow=TRUE)
colnames(A) <- paste0('x', 1:3)
b <- c(2, 3, 6)
showEqn(A, b)
## 1*x1 + 3*x2 + 1*x3 = 2
## 1*x1 - 2*x2 - 2*x3 = 3
## 2*x1 + 1*x2 - 1*x3 = 6
Are the equations consistent? No.
c( R(A), R(cbind(A,b)) ) # show ranks
## [1] 2 3
all.equal( R(A), R(cbind(A,b)) ) # consistent?
## [1] "Mean relative difference: 0.5"
订阅:
博文 (Atom)