Every time I think I know what's going on, suddenly there's another layer of complications.
2015年6月30日星期二
2015年6月27日星期六
EM alogrithm for mixed Normal distribtuion
Data are from Robert Hogg Exercise 6.6.8
library(car)
x<-c(119.0,96.0,146.2,138.6,143.4,98.2,124.5,114.1,136.2,136.4,
184.8,79.8,151.9,114.2,145.7,95.9,97.3,136.4,109.2,103.2)
densityPlot(x)
p_0<-0.6
u1_0<-105
u2_0<-130
sigma1_0<-15
sigma2_0<-25
p<-c()
pi<-c()
u1<-c()
u2<-c()
sigma1_2<-c()
sigma2_2<-c()
s<-c()
s1<-c()
diff<-c()
j<-1 #this is imporant
s<-c(p_0,u1_0,u2_0,sigma1_0^2,sigma2_0^2) #initial guess of p,u1,u2,sigma1, sigma2
p_i_0<-p_0*dnorm(x,u2_0,sigma2_0)/((1-p_0)*dnorm(x,u1_0,sigma1_0)+p_0*dnorm(x,u2_0,sigma2_0))
p[j]<-mean(p_i_0)
u1[j]<-sum((1-p_i_0)*x)/sum(1-p_i_0)
u2[j]<-sum(p_i_0*x)/sum(p_i_0)
sigma1_2[j]<-sum((1-p_i_0)*(x-u1_0)^2)/sum(1-p_i_0)
sigma2_2[j]<-sum(p_i_0*(x-u2_0)^2)/sum(p_i_0)
s1<-c(p[j],u1[j],u2[j],sigma1_2[j],sigma2_2[j])
for(i in 1:5){
diff[i]<-abs(s1[i]-s[i])
}
for(i in 1:5){ #in fact we don't need this, we can mainly focus on p
while(diff[i]>0.000001){
s<-c(p[j],u1[j],u2[j],sigma1_2[j],sigma2_2[j])
p_i<-p[j]*dnorm(x,u2[j],(sigma2_2[j])^0.5)/((1-p[j])*dnorm(x,u1[j],sigma1_2[j]^0.5)+p[j]*dnorm(x,u2[j],sigma2_2[j]^0.5))
#p_i will be updated by p,u1,u2,sigma1 and sigma2
u1[j+1]<-sum((1-p_i)*x)/sum(1-p_i)
u2[j+1]<-sum(p_i*x)/sum(p_i)
sigma1_2[j+1]<-sum((1-p_i)*(x-u1[j+1])^2)/sum(1-p_i)
sigma2_2[j+1]<-sum(p_i*(x-u2[j+1])^2)/sum(p_i)
p[j+1]<-mean(p_i)
s1<-c(p[j+1],u1[j+1],u2[j+1],sigma1_2[j+1],sigma2_2[j+1])
diff[i]<-abs(s1[i]-s[i])
j=j+1
}
}
#results:
After 301 iterations all parameters are within 0.00000 accuracy
For p:
[1] 0.6446007 0.6508217 0.6549901 0.6582507 0.6608042 0.6629207 0.6649003
[8] 0.6668472 0.6687443 0.6705665 0.6723035 0.6739539 0.6755194 0.6770028
[15] 0.6784075 0.6797370 0.6809951 0.6821853 0.6833114 0.6843770 0.6853854
[22] 0.6863398 0.6872434 0.6880990 0.6889093 0.6896769 0.6904043 0.6910936
[29] 0.6917470 0.6923664 0.6929539 0.6935110 0.6940395 0.6945410 0.6950169
[36] 0.6954685 0.6958972 0.6963042 0.6966907 0.6970577 0.6974063 0.6977374
[43] 0.6980519 0.6983508 0.6986348 0.6989047 0.6991612 0.6994050 0.6996367
[50] 0.6998571 0.7000666 0.7002657 0.7004552 0.7006353 0.7008066 0.7009696
[57] 0.7011245 0.7012720 0.7014122 0.7015457 0.7016726 0.7017934 0.7019083
[64] 0.7020177 0.7021217 0.7022208 0.7023150 0.7024047 0.7024901 0.7025713
[71] 0.7026487 0.7027223 0.7027924 0.7028591 0.7029226 0.7029830 0.7030405
[78] 0.7030953 0.7031475 0.7031971 0.7032444 0.7032894 0.7033322 0.7033730
[85] 0.7034119 0.7034489 0.7034841 0.7035176 0.7035496 0.7035800 0.7036089
[92] 0.7036365 0.7036627 0.7036877 0.7037115 0.7037342 0.7037558 0.7037764
[99] 0.7037959 0.7038146 0.7038323 0.7038493 0.7038654 0.7038807 0.7038953
[106] 0.7039092 0.7039225 0.7039351 0.7039471 0.7039585 0.7039694 0.7039798
[113] 0.7039897 0.7039991 0.7040081 0.7040166 0.7040247 0.7040325 0.7040399
[120] 0.7040469 0.7040536 0.7040600 0.7040660 0.7040718 0.7040773 0.7040826
[127] 0.7040876 0.7040923 0.7040968 0.7041012 0.7041053 0.7041092 0.7041129
[134] 0.7041165 0.7041199 0.7041231 0.7041261 0.7041291 0.7041319 0.7041345
[141] 0.7041370 0.7041394 0.7041417 0.7041439 0.7041460 0.7041480 0.7041499
[148] 0.7041516 0.7041534 0.7041550 0.7041565 0.7041580 0.7041594 0.7041608
[155] 0.7041620 0.7041633 0.7041644 0.7041655 0.7041666 0.7041676 0.7041685
[162] 0.7041694 0.7041703 0.7041711 0.7041719 0.7041727 0.7041734 0.7041740
[169] 0.7041747 0.7041753 0.7041759 0.7041765 0.7041770 0.7041775 0.7041780
[176] 0.7041784 0.7041789 0.7041793 0.7041797 0.7041801 0.7041804 0.7041808
[183] 0.7041811 0.7041814 0.7041817 0.7041820 0.7041822 0.7041825 0.7041827
[190] 0.7041830 0.7041832 0.7041834 0.7041836 0.7041838 0.7041840 0.7041842
[197] 0.7041843 0.7041845 0.7041846 0.7041848 0.7041849 0.7041850 0.7041852
[204] 0.7041853 0.7041854 0.7041855 0.7041856 0.7041857 0.7041858 0.7041859
[211] 0.7041860 0.7041860 0.7041861 0.7041862 0.7041863 0.7041863 0.7041864
[218] 0.7041864 0.7041865 0.7041866 0.7041866 0.7041867 0.7041867 0.7041867
[225] 0.7041868 0.7041868 0.7041869 0.7041869 0.7041869 0.7041870 0.7041870
[232] 0.7041870 0.7041871 0.7041871 0.7041871 0.7041871 0.7041872 0.7041872
[239] 0.7041872 0.7041872 0.7041872 0.7041873 0.7041873 0.7041873 0.7041873
[246] 0.7041873 0.7041873 0.7041874 0.7041874 0.7041874 0.7041874 0.7041874
[253] 0.7041874 0.7041874 0.7041874 0.7041875 0.7041875 0.7041875 0.7041875
[260] 0.7041875 0.7041875 0.7041875 0.7041875 0.7041875 0.7041875 0.7041875
[267] 0.7041875 0.7041875 0.7041875 0.7041875 0.7041875 0.7041876 0.7041876
[274] 0.7041876 0.7041876 0.7041876 0.7041876 0.7041876 0.7041876 0.7041876
[281] 0.7041876 0.7041876 0.7041876 0.7041876 0.7041876 0.7041876 0.7041876
[288] 0.7041876 0.7041876 0.7041876 0.7041876 0.7041876 0.7041876 0.7041876
[295] 0.7041876 0.7041876 0.7041876 0.7041876 0.7041876 0.7041876 0.7041876
For u1
u1
[1] 105.37122 104.28497 103.19437 102.19782 101.34808 100.69007 100.21667 99.88967 99.66755
[10] 99.51631 99.41138 99.33623 99.28022 99.23661 99.20121 99.17139 99.14549 99.12247
[19] 99.10163 99.08255 99.06490 99.04849 99.03315 99.01877 99.00527 98.99257 98.98060
[28] 98.96932 98.95867 98.94862 98.93912 98.93015 98.92166 98.91364 98.90605 98.89886
[37] 98.89206 98.88562 98.87952 98.87374 98.86826 98.86307 98.85815 98.85348 98.84905
[46] 98.84485 98.84087 98.83709 98.83350 98.83009 98.82686 98.82379 98.82087 98.81810
[55] 98.81547 98.81297 98.81059 98.80833 98.80619 98.80415 98.80221 98.80037 98.79861
[64] 98.79695 98.79536 98.79386 98.79243 98.79106 98.78977 98.78853 98.78736 98.78624
[73] 98.78518 98.78417 98.78321 98.78230 98.78143 98.78060 98.77981 98.77906 98.77835
[82] 98.77767 98.77702 98.77640 98.77582 98.77526 98.77473 98.77422 98.77374 98.77329
[91] 98.77285 98.77243 98.77204 98.77166 98.77130 98.77096 98.77064 98.77033 98.77003
[100] 98.76975 98.76949 98.76923 98.76899 98.76876 98.76854 98.76833 98.76813 98.76794
[109] 98.76776 98.76759 98.76743 98.76727 98.76712 98.76698 98.76685 98.76672 98.76660
[118] 98.76648 98.76637 98.76626 98.76616 98.76607 98.76598 98.76589 98.76581 98.76573
[127] 98.76565 98.76558 98.76551 98.76545 98.76539 98.76533 98.76527 98.76522 98.76517
[136] 98.76512 98.76507 98.76503 98.76499 98.76495 98.76491 98.76487 98.76484 98.76481
[145] 98.76478 98.76475 98.76472 98.76469 98.76467 98.76464 98.76462 98.76460 98.76457
[154] 98.76455 98.76454 98.76452 98.76450 98.76448 98.76447 98.76445 98.76444 98.76442
[163] 98.76441 98.76440 98.76439 98.76438 98.76437 98.76436 98.76435 98.76434 98.76433
[172] 98.76432 98.76431 98.76430 98.76430 98.76429 98.76428 98.76428 98.76427 98.76427
[181] 98.76426 98.76425 98.76425 98.76425 98.76424 98.76424 98.76423 98.76423 98.76423
[190] 98.76422 98.76422 98.76422 98.76421 98.76421 98.76421 98.76420 98.76420 98.76420
[199] 98.76420 98.76419 98.76419 98.76419 98.76419 98.76419 98.76419 98.76418 98.76418
[208] 98.76418 98.76418 98.76418 98.76418 98.76418 98.76417 98.76417 98.76417 98.76417
[217] 98.76417 98.76417 98.76417 98.76417 98.76417 98.76417 98.76417 98.76417 98.76416
[226] 98.76416 98.76416 98.76416 98.76416 98.76416 98.76416 98.76416 98.76416 98.76416
[235] 98.76416 98.76416 98.76416 98.76416 98.76416 98.76416 98.76416 98.76416 98.76416
[244] 98.76416 98.76416 98.76416 98.76416 98.76416 98.76416 98.76416 98.76416 98.76416
[253] 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415
[262] 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415
[271] 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415
[280] 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415
[289] 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415
[298] 98.76415 98.76415 98.76415 98.76415
for u2
[1] 133.5728 133.8861 134.2721 134.6356 134.9464 135.1737 135.3096 135.3706 135.3799 135.3572
[11] 135.3157 135.2642 135.2078 135.1499 135.0923 135.0362 134.9820 134.9302 134.8809 134.8340
[21] 134.7895 134.7473 134.7073 134.6695 134.6337 134.5997 134.5676 134.5371 134.5083 134.4809
[31] 134.4550 134.4305 134.4072 134.3851 134.3641 134.3442 134.3254 134.3075 134.2905 134.2743
[41] 134.2590 134.2445 134.2307 134.2175 134.2051 134.1932 134.1820 134.1713 134.1611 134.1515
[51] 134.1423 134.1335 134.1252 134.1173 134.1098 134.1027 134.0959 134.0895 134.0833 134.0775
[61] 134.0719 134.0666 134.0616 134.0568 134.0523 134.0479 134.0438 134.0399 134.0361 134.0326
[71] 134.0292 134.0260 134.0229 134.0200 134.0172 134.0146 134.0121 134.0097 134.0074 134.0052
[81] 134.0032 134.0012 133.9993 133.9975 133.9958 133.9942 133.9927 133.9912 133.9898 133.9885
[91] 133.9872 133.9860 133.9849 133.9838 133.9827 133.9818 133.9808 133.9799 133.9791 133.9782
[101] 133.9775 133.9767 133.9760 133.9754 133.9747 133.9741 133.9735 133.9730 133.9725 133.9720
[111] 133.9715 133.9710 133.9706 133.9702 133.9698 133.9694 133.9691 133.9687 133.9684 133.9681
[121] 133.9678 133.9675 133.9673 133.9670 133.9668 133.9665 133.9663 133.9661 133.9659 133.9657
[131] 133.9655 133.9654 133.9652 133.9651 133.9649 133.9648 133.9646 133.9645 133.9644 133.9643
[141] 133.9642 133.9640 133.9639 133.9639 133.9638 133.9637 133.9636 133.9635 133.9634 133.9634
[151] 133.9633 133.9632 133.9632 133.9631 133.9631 133.9630 133.9630 133.9629 133.9629 133.9628
[161] 133.9628 133.9627 133.9627 133.9627 133.9626 133.9626 133.9626 133.9625 133.9625 133.9625
[171] 133.9625 133.9624 133.9624 133.9624 133.9624 133.9623 133.9623 133.9623 133.9623 133.9623
[181] 133.9623 133.9622 133.9622 133.9622 133.9622 133.9622 133.9622 133.9622 133.9622 133.9621
[191] 133.9621 133.9621 133.9621 133.9621 133.9621 133.9621 133.9621 133.9621 133.9621 133.9621
[201] 133.9621 133.9621 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620
[211] 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620
[221] 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620
[231] 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620
[241] 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620
[251] 133.9620 133.9620 133.9620 133.9620 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619
[261] 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619
[271] 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619
[281] 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619
[291] 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619
[301] 133.9619
For sigma1 square:
[1] 220.12489 205.10096 183.53226 160.65836 141.18629 127.45956 118.93847 113.86190 110.77411
[10] 108.80379 107.47407 106.52342 105.80421 105.23069 104.75194 104.33723 103.96770 103.63162
[19] 103.32155 103.03264 102.76167 102.50639 102.26517 102.03679 101.82027 101.61481 101.41971
[28] 101.23438 101.05826 100.89085 100.73171 100.58039 100.43649 100.29964 100.16948 100.04567
[37] 99.92790 99.81586 99.70927 99.60785 99.51136 99.41954 99.33217 99.24902 99.16990
[46] 99.09459 99.02292 98.95471 98.88979 98.82799 98.76917 98.71318 98.65988 98.60914
[55] 98.56084 98.51486 98.47108 98.42941 98.38973 98.35196 98.31599 98.28174 98.24914
[64] 98.21810 98.18854 98.16039 98.13359 98.10807 98.08377 98.06063 98.03860 98.01762
[73] 97.99764 97.97861 97.96049 97.94324 97.92681 97.91116 97.89626 97.88207 97.86855
[82] 97.85568 97.84342 97.83175 97.82063 97.81005 97.79996 97.79036 97.78122 97.77251
[91] 97.76421 97.75631 97.74879 97.74162 97.73479 97.72829 97.72210 97.71621 97.71059
[100] 97.70524 97.70015 97.69530 97.69067 97.68627 97.68208 97.67809 97.67429 97.67067
[109] 97.66722 97.66393 97.66080 97.65782 97.65498 97.65228 97.64970 97.64725 97.64491
[118] 97.64269 97.64057 97.63855 97.63663 97.63480 97.63305 97.63139 97.62981 97.62830
[127] 97.62687 97.62550 97.62420 97.62296 97.62178 97.62065 97.61958 97.61856 97.61759
[136] 97.61666 97.61578 97.61494 97.61414 97.61338 97.61265 97.61196 97.61130 97.61067
[145] 97.61008 97.60951 97.60897 97.60845 97.60796 97.60749 97.60704 97.60662 97.60621
[154] 97.60583 97.60546 97.60511 97.60478 97.60446 97.60416 97.60387 97.60360 97.60334
[163] 97.60309 97.60285 97.60263 97.60241 97.60221 97.60201 97.60183 97.60165 97.60148
[172] 97.60132 97.60117 97.60102 97.60088 97.60075 97.60062 97.60051 97.60039 97.60028
[181] 97.60018 97.60008 97.59999 97.59990 97.59981 97.59973 97.59965 97.59958 97.59951
[190] 97.59944 97.59938 97.59932 97.59926 97.59921 97.59915 97.59910 97.59906 97.59901
[199] 97.59897 97.59893 97.59889 97.59885 97.59881 97.59878 97.59875 97.59872 97.59869
[208] 97.59866 97.59863 97.59861 97.59859 97.59856 97.59854 97.59852 97.59850 97.59848
[217] 97.59846 97.59845 97.59843 97.59841 97.59840 97.59839 97.59837 97.59836 97.59835
[226] 97.59834 97.59832 97.59831 97.59830 97.59829 97.59829 97.59828 97.59827 97.59826
[235] 97.59825 97.59825 97.59824 97.59823 97.59823 97.59822 97.59822 97.59821 97.59821
[244] 97.59820 97.59820 97.59819 97.59819 97.59818 97.59818 97.59818 97.59817 97.59817
[253] 97.59817 97.59816 97.59816 97.59816 97.59816 97.59815 97.59815 97.59815 97.59815
[262] 97.59814 97.59814 97.59814 97.59814 97.59814 97.59814 97.59813 97.59813 97.59813
[271] 97.59813 97.59813 97.59813 97.59813 97.59813 97.59812 97.59812 97.59812 97.59812
[280] 97.59812 97.59812 97.59812 97.59812 97.59812 97.59812 97.59812 97.59812 97.59812
[289] 97.59811 97.59811 97.59811 97.59811 97.59811 97.59811 97.59811 97.59811 97.59811
[298] 97.59811 97.59811 97.59811 97.59811
For sigma2 square
[1] 559.5878 525.6849 505.7973 488.0545 472.0863 458.8586 449.1209 442.7654 439.1009 437.3237
[11] 436.7687 436.9631 437.5961 438.4720 439.4702 440.5184 441.5732 442.6096 443.6137 444.5780
[21] 445.4991 446.3760 447.2092 447.9998 448.7495 449.4602 450.1336 450.7719 451.3767 451.9501
[31] 452.4935 453.0088 453.4975 453.9609 454.4006 454.8177 455.2135 455.5891 455.9457 456.2843
[41] 456.6057 456.9110 457.2010 457.4764 457.7380 457.9866 458.2229 458.4474 458.6608 458.8636
[51] 459.0564 459.2397 459.4140 459.5797 459.7373 459.8872 460.0297 460.1653 460.2943 460.4170
[61] 460.5337 460.6447 460.7503 460.8509 460.9465 461.0375 461.1241 461.2065 461.2850 461.3596
[71] 461.4307 461.4983 461.5627 461.6240 461.6823 461.7378 461.7907 461.8410 461.8889 461.9345
[81] 461.9779 462.0192 462.0586 462.0960 462.1317 462.1657 462.1980 462.2288 462.2581 462.2861
[91] 462.3126 462.3380 462.3621 462.3850 462.4069 462.4277 462.4475 462.4664 462.4844 462.5015
[101] 462.5178 462.5333 462.5481 462.5622 462.5756 462.5883 462.6005 462.6121 462.6231 462.6336
[111] 462.6436 462.6532 462.6622 462.6709 462.6791 462.6869 462.6944 462.7015 462.7083 462.7147
[121] 462.7209 462.7267 462.7323 462.7376 462.7427 462.7475 462.7521 462.7564 462.7606 462.7646
[131] 462.7683 462.7719 462.7754 462.7786 462.7817 462.7847 462.7875 462.7902 462.7927 462.7952
[141] 462.7975 462.7997 462.8018 462.8038 462.8057 462.8075 462.8093 462.8109 462.8125 462.8140
[151] 462.8154 462.8167 462.8180 462.8193 462.8204 462.8216 462.8226 462.8236 462.8246 462.8255
[161] 462.8264 462.8272 462.8280 462.8288 462.8295 462.8302 462.8308 462.8315 462.8321 462.8326
[171] 462.8332 462.8337 462.8342 462.8346 462.8351 462.8355 462.8359 462.8363 462.8366 462.8370
[181] 462.8373 462.8376 462.8379 462.8382 462.8385 462.8387 462.8390 462.8392 462.8394 462.8397
[191] 462.8399 462.8401 462.8402 462.8404 462.8406 462.8407 462.8409 462.8410 462.8412 462.8413
[201] 462.8414 462.8416 462.8417 462.8418 462.8419 462.8420 462.8421 462.8422 462.8422 462.8423
[211] 462.8424 462.8425 462.8425 462.8426 462.8427 462.8427 462.8428 462.8428 462.8429 462.8429
[221] 462.8430 462.8430 462.8431 462.8431 462.8432 462.8432 462.8432 462.8433 462.8433 462.8433
[231] 462.8434 462.8434 462.8434 462.8434 462.8435 462.8435 462.8435 462.8435 462.8435 462.8436
[241] 462.8436 462.8436 462.8436 462.8436 462.8436 462.8437 462.8437 462.8437 462.8437 462.8437
[251] 462.8437 462.8437 462.8437 462.8437 462.8438 462.8438 462.8438 462.8438 462.8438 462.8438
[261] 462.8438 462.8438 462.8438 462.8438 462.8438 462.8438 462.8438 462.8438 462.8438 462.8438
[271] 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439
[281] 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439
[291] 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439
[301] 462.8439
library(car)
x<-c(119.0,96.0,146.2,138.6,143.4,98.2,124.5,114.1,136.2,136.4,
184.8,79.8,151.9,114.2,145.7,95.9,97.3,136.4,109.2,103.2)
densityPlot(x)
p_0<-0.6
u1_0<-105
u2_0<-130
sigma1_0<-15
sigma2_0<-25
p<-c()
pi<-c()
u1<-c()
u2<-c()
sigma1_2<-c()
sigma2_2<-c()
s<-c()
s1<-c()
diff<-c()
j<-1 #this is imporant
s<-c(p_0,u1_0,u2_0,sigma1_0^2,sigma2_0^2) #initial guess of p,u1,u2,sigma1, sigma2
p_i_0<-p_0*dnorm(x,u2_0,sigma2_0)/((1-p_0)*dnorm(x,u1_0,sigma1_0)+p_0*dnorm(x,u2_0,sigma2_0))
p[j]<-mean(p_i_0)
u1[j]<-sum((1-p_i_0)*x)/sum(1-p_i_0)
u2[j]<-sum(p_i_0*x)/sum(p_i_0)
sigma1_2[j]<-sum((1-p_i_0)*(x-u1_0)^2)/sum(1-p_i_0)
sigma2_2[j]<-sum(p_i_0*(x-u2_0)^2)/sum(p_i_0)
s1<-c(p[j],u1[j],u2[j],sigma1_2[j],sigma2_2[j])
for(i in 1:5){
diff[i]<-abs(s1[i]-s[i])
}
for(i in 1:5){ #in fact we don't need this, we can mainly focus on p
while(diff[i]>0.000001){
s<-c(p[j],u1[j],u2[j],sigma1_2[j],sigma2_2[j])
p_i<-p[j]*dnorm(x,u2[j],(sigma2_2[j])^0.5)/((1-p[j])*dnorm(x,u1[j],sigma1_2[j]^0.5)+p[j]*dnorm(x,u2[j],sigma2_2[j]^0.5))
#p_i will be updated by p,u1,u2,sigma1 and sigma2
u1[j+1]<-sum((1-p_i)*x)/sum(1-p_i)
u2[j+1]<-sum(p_i*x)/sum(p_i)
sigma1_2[j+1]<-sum((1-p_i)*(x-u1[j+1])^2)/sum(1-p_i)
sigma2_2[j+1]<-sum(p_i*(x-u2[j+1])^2)/sum(p_i)
p[j+1]<-mean(p_i)
s1<-c(p[j+1],u1[j+1],u2[j+1],sigma1_2[j+1],sigma2_2[j+1])
diff[i]<-abs(s1[i]-s[i])
j=j+1
}
}
#results:
After 301 iterations all parameters are within 0.00000 accuracy
For p:
[1] 0.6446007 0.6508217 0.6549901 0.6582507 0.6608042 0.6629207 0.6649003
[8] 0.6668472 0.6687443 0.6705665 0.6723035 0.6739539 0.6755194 0.6770028
[15] 0.6784075 0.6797370 0.6809951 0.6821853 0.6833114 0.6843770 0.6853854
[22] 0.6863398 0.6872434 0.6880990 0.6889093 0.6896769 0.6904043 0.6910936
[29] 0.6917470 0.6923664 0.6929539 0.6935110 0.6940395 0.6945410 0.6950169
[36] 0.6954685 0.6958972 0.6963042 0.6966907 0.6970577 0.6974063 0.6977374
[43] 0.6980519 0.6983508 0.6986348 0.6989047 0.6991612 0.6994050 0.6996367
[50] 0.6998571 0.7000666 0.7002657 0.7004552 0.7006353 0.7008066 0.7009696
[57] 0.7011245 0.7012720 0.7014122 0.7015457 0.7016726 0.7017934 0.7019083
[64] 0.7020177 0.7021217 0.7022208 0.7023150 0.7024047 0.7024901 0.7025713
[71] 0.7026487 0.7027223 0.7027924 0.7028591 0.7029226 0.7029830 0.7030405
[78] 0.7030953 0.7031475 0.7031971 0.7032444 0.7032894 0.7033322 0.7033730
[85] 0.7034119 0.7034489 0.7034841 0.7035176 0.7035496 0.7035800 0.7036089
[92] 0.7036365 0.7036627 0.7036877 0.7037115 0.7037342 0.7037558 0.7037764
[99] 0.7037959 0.7038146 0.7038323 0.7038493 0.7038654 0.7038807 0.7038953
[106] 0.7039092 0.7039225 0.7039351 0.7039471 0.7039585 0.7039694 0.7039798
[113] 0.7039897 0.7039991 0.7040081 0.7040166 0.7040247 0.7040325 0.7040399
[120] 0.7040469 0.7040536 0.7040600 0.7040660 0.7040718 0.7040773 0.7040826
[127] 0.7040876 0.7040923 0.7040968 0.7041012 0.7041053 0.7041092 0.7041129
[134] 0.7041165 0.7041199 0.7041231 0.7041261 0.7041291 0.7041319 0.7041345
[141] 0.7041370 0.7041394 0.7041417 0.7041439 0.7041460 0.7041480 0.7041499
[148] 0.7041516 0.7041534 0.7041550 0.7041565 0.7041580 0.7041594 0.7041608
[155] 0.7041620 0.7041633 0.7041644 0.7041655 0.7041666 0.7041676 0.7041685
[162] 0.7041694 0.7041703 0.7041711 0.7041719 0.7041727 0.7041734 0.7041740
[169] 0.7041747 0.7041753 0.7041759 0.7041765 0.7041770 0.7041775 0.7041780
[176] 0.7041784 0.7041789 0.7041793 0.7041797 0.7041801 0.7041804 0.7041808
[183] 0.7041811 0.7041814 0.7041817 0.7041820 0.7041822 0.7041825 0.7041827
[190] 0.7041830 0.7041832 0.7041834 0.7041836 0.7041838 0.7041840 0.7041842
[197] 0.7041843 0.7041845 0.7041846 0.7041848 0.7041849 0.7041850 0.7041852
[204] 0.7041853 0.7041854 0.7041855 0.7041856 0.7041857 0.7041858 0.7041859
[211] 0.7041860 0.7041860 0.7041861 0.7041862 0.7041863 0.7041863 0.7041864
[218] 0.7041864 0.7041865 0.7041866 0.7041866 0.7041867 0.7041867 0.7041867
[225] 0.7041868 0.7041868 0.7041869 0.7041869 0.7041869 0.7041870 0.7041870
[232] 0.7041870 0.7041871 0.7041871 0.7041871 0.7041871 0.7041872 0.7041872
[239] 0.7041872 0.7041872 0.7041872 0.7041873 0.7041873 0.7041873 0.7041873
[246] 0.7041873 0.7041873 0.7041874 0.7041874 0.7041874 0.7041874 0.7041874
[253] 0.7041874 0.7041874 0.7041874 0.7041875 0.7041875 0.7041875 0.7041875
[260] 0.7041875 0.7041875 0.7041875 0.7041875 0.7041875 0.7041875 0.7041875
[267] 0.7041875 0.7041875 0.7041875 0.7041875 0.7041875 0.7041876 0.7041876
[274] 0.7041876 0.7041876 0.7041876 0.7041876 0.7041876 0.7041876 0.7041876
[281] 0.7041876 0.7041876 0.7041876 0.7041876 0.7041876 0.7041876 0.7041876
[288] 0.7041876 0.7041876 0.7041876 0.7041876 0.7041876 0.7041876 0.7041876
[295] 0.7041876 0.7041876 0.7041876 0.7041876 0.7041876 0.7041876 0.7041876
For u1
u1
[1] 105.37122 104.28497 103.19437 102.19782 101.34808 100.69007 100.21667 99.88967 99.66755
[10] 99.51631 99.41138 99.33623 99.28022 99.23661 99.20121 99.17139 99.14549 99.12247
[19] 99.10163 99.08255 99.06490 99.04849 99.03315 99.01877 99.00527 98.99257 98.98060
[28] 98.96932 98.95867 98.94862 98.93912 98.93015 98.92166 98.91364 98.90605 98.89886
[37] 98.89206 98.88562 98.87952 98.87374 98.86826 98.86307 98.85815 98.85348 98.84905
[46] 98.84485 98.84087 98.83709 98.83350 98.83009 98.82686 98.82379 98.82087 98.81810
[55] 98.81547 98.81297 98.81059 98.80833 98.80619 98.80415 98.80221 98.80037 98.79861
[64] 98.79695 98.79536 98.79386 98.79243 98.79106 98.78977 98.78853 98.78736 98.78624
[73] 98.78518 98.78417 98.78321 98.78230 98.78143 98.78060 98.77981 98.77906 98.77835
[82] 98.77767 98.77702 98.77640 98.77582 98.77526 98.77473 98.77422 98.77374 98.77329
[91] 98.77285 98.77243 98.77204 98.77166 98.77130 98.77096 98.77064 98.77033 98.77003
[100] 98.76975 98.76949 98.76923 98.76899 98.76876 98.76854 98.76833 98.76813 98.76794
[109] 98.76776 98.76759 98.76743 98.76727 98.76712 98.76698 98.76685 98.76672 98.76660
[118] 98.76648 98.76637 98.76626 98.76616 98.76607 98.76598 98.76589 98.76581 98.76573
[127] 98.76565 98.76558 98.76551 98.76545 98.76539 98.76533 98.76527 98.76522 98.76517
[136] 98.76512 98.76507 98.76503 98.76499 98.76495 98.76491 98.76487 98.76484 98.76481
[145] 98.76478 98.76475 98.76472 98.76469 98.76467 98.76464 98.76462 98.76460 98.76457
[154] 98.76455 98.76454 98.76452 98.76450 98.76448 98.76447 98.76445 98.76444 98.76442
[163] 98.76441 98.76440 98.76439 98.76438 98.76437 98.76436 98.76435 98.76434 98.76433
[172] 98.76432 98.76431 98.76430 98.76430 98.76429 98.76428 98.76428 98.76427 98.76427
[181] 98.76426 98.76425 98.76425 98.76425 98.76424 98.76424 98.76423 98.76423 98.76423
[190] 98.76422 98.76422 98.76422 98.76421 98.76421 98.76421 98.76420 98.76420 98.76420
[199] 98.76420 98.76419 98.76419 98.76419 98.76419 98.76419 98.76419 98.76418 98.76418
[208] 98.76418 98.76418 98.76418 98.76418 98.76418 98.76417 98.76417 98.76417 98.76417
[217] 98.76417 98.76417 98.76417 98.76417 98.76417 98.76417 98.76417 98.76417 98.76416
[226] 98.76416 98.76416 98.76416 98.76416 98.76416 98.76416 98.76416 98.76416 98.76416
[235] 98.76416 98.76416 98.76416 98.76416 98.76416 98.76416 98.76416 98.76416 98.76416
[244] 98.76416 98.76416 98.76416 98.76416 98.76416 98.76416 98.76416 98.76416 98.76416
[253] 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415
[262] 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415
[271] 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415
[280] 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415
[289] 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415 98.76415
[298] 98.76415 98.76415 98.76415 98.76415
for u2
[1] 133.5728 133.8861 134.2721 134.6356 134.9464 135.1737 135.3096 135.3706 135.3799 135.3572
[11] 135.3157 135.2642 135.2078 135.1499 135.0923 135.0362 134.9820 134.9302 134.8809 134.8340
[21] 134.7895 134.7473 134.7073 134.6695 134.6337 134.5997 134.5676 134.5371 134.5083 134.4809
[31] 134.4550 134.4305 134.4072 134.3851 134.3641 134.3442 134.3254 134.3075 134.2905 134.2743
[41] 134.2590 134.2445 134.2307 134.2175 134.2051 134.1932 134.1820 134.1713 134.1611 134.1515
[51] 134.1423 134.1335 134.1252 134.1173 134.1098 134.1027 134.0959 134.0895 134.0833 134.0775
[61] 134.0719 134.0666 134.0616 134.0568 134.0523 134.0479 134.0438 134.0399 134.0361 134.0326
[71] 134.0292 134.0260 134.0229 134.0200 134.0172 134.0146 134.0121 134.0097 134.0074 134.0052
[81] 134.0032 134.0012 133.9993 133.9975 133.9958 133.9942 133.9927 133.9912 133.9898 133.9885
[91] 133.9872 133.9860 133.9849 133.9838 133.9827 133.9818 133.9808 133.9799 133.9791 133.9782
[101] 133.9775 133.9767 133.9760 133.9754 133.9747 133.9741 133.9735 133.9730 133.9725 133.9720
[111] 133.9715 133.9710 133.9706 133.9702 133.9698 133.9694 133.9691 133.9687 133.9684 133.9681
[121] 133.9678 133.9675 133.9673 133.9670 133.9668 133.9665 133.9663 133.9661 133.9659 133.9657
[131] 133.9655 133.9654 133.9652 133.9651 133.9649 133.9648 133.9646 133.9645 133.9644 133.9643
[141] 133.9642 133.9640 133.9639 133.9639 133.9638 133.9637 133.9636 133.9635 133.9634 133.9634
[151] 133.9633 133.9632 133.9632 133.9631 133.9631 133.9630 133.9630 133.9629 133.9629 133.9628
[161] 133.9628 133.9627 133.9627 133.9627 133.9626 133.9626 133.9626 133.9625 133.9625 133.9625
[171] 133.9625 133.9624 133.9624 133.9624 133.9624 133.9623 133.9623 133.9623 133.9623 133.9623
[181] 133.9623 133.9622 133.9622 133.9622 133.9622 133.9622 133.9622 133.9622 133.9622 133.9621
[191] 133.9621 133.9621 133.9621 133.9621 133.9621 133.9621 133.9621 133.9621 133.9621 133.9621
[201] 133.9621 133.9621 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620
[211] 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620
[221] 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620
[231] 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620
[241] 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620 133.9620
[251] 133.9620 133.9620 133.9620 133.9620 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619
[261] 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619
[271] 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619
[281] 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619
[291] 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619 133.9619
[301] 133.9619
For sigma1 square:
[1] 220.12489 205.10096 183.53226 160.65836 141.18629 127.45956 118.93847 113.86190 110.77411
[10] 108.80379 107.47407 106.52342 105.80421 105.23069 104.75194 104.33723 103.96770 103.63162
[19] 103.32155 103.03264 102.76167 102.50639 102.26517 102.03679 101.82027 101.61481 101.41971
[28] 101.23438 101.05826 100.89085 100.73171 100.58039 100.43649 100.29964 100.16948 100.04567
[37] 99.92790 99.81586 99.70927 99.60785 99.51136 99.41954 99.33217 99.24902 99.16990
[46] 99.09459 99.02292 98.95471 98.88979 98.82799 98.76917 98.71318 98.65988 98.60914
[55] 98.56084 98.51486 98.47108 98.42941 98.38973 98.35196 98.31599 98.28174 98.24914
[64] 98.21810 98.18854 98.16039 98.13359 98.10807 98.08377 98.06063 98.03860 98.01762
[73] 97.99764 97.97861 97.96049 97.94324 97.92681 97.91116 97.89626 97.88207 97.86855
[82] 97.85568 97.84342 97.83175 97.82063 97.81005 97.79996 97.79036 97.78122 97.77251
[91] 97.76421 97.75631 97.74879 97.74162 97.73479 97.72829 97.72210 97.71621 97.71059
[100] 97.70524 97.70015 97.69530 97.69067 97.68627 97.68208 97.67809 97.67429 97.67067
[109] 97.66722 97.66393 97.66080 97.65782 97.65498 97.65228 97.64970 97.64725 97.64491
[118] 97.64269 97.64057 97.63855 97.63663 97.63480 97.63305 97.63139 97.62981 97.62830
[127] 97.62687 97.62550 97.62420 97.62296 97.62178 97.62065 97.61958 97.61856 97.61759
[136] 97.61666 97.61578 97.61494 97.61414 97.61338 97.61265 97.61196 97.61130 97.61067
[145] 97.61008 97.60951 97.60897 97.60845 97.60796 97.60749 97.60704 97.60662 97.60621
[154] 97.60583 97.60546 97.60511 97.60478 97.60446 97.60416 97.60387 97.60360 97.60334
[163] 97.60309 97.60285 97.60263 97.60241 97.60221 97.60201 97.60183 97.60165 97.60148
[172] 97.60132 97.60117 97.60102 97.60088 97.60075 97.60062 97.60051 97.60039 97.60028
[181] 97.60018 97.60008 97.59999 97.59990 97.59981 97.59973 97.59965 97.59958 97.59951
[190] 97.59944 97.59938 97.59932 97.59926 97.59921 97.59915 97.59910 97.59906 97.59901
[199] 97.59897 97.59893 97.59889 97.59885 97.59881 97.59878 97.59875 97.59872 97.59869
[208] 97.59866 97.59863 97.59861 97.59859 97.59856 97.59854 97.59852 97.59850 97.59848
[217] 97.59846 97.59845 97.59843 97.59841 97.59840 97.59839 97.59837 97.59836 97.59835
[226] 97.59834 97.59832 97.59831 97.59830 97.59829 97.59829 97.59828 97.59827 97.59826
[235] 97.59825 97.59825 97.59824 97.59823 97.59823 97.59822 97.59822 97.59821 97.59821
[244] 97.59820 97.59820 97.59819 97.59819 97.59818 97.59818 97.59818 97.59817 97.59817
[253] 97.59817 97.59816 97.59816 97.59816 97.59816 97.59815 97.59815 97.59815 97.59815
[262] 97.59814 97.59814 97.59814 97.59814 97.59814 97.59814 97.59813 97.59813 97.59813
[271] 97.59813 97.59813 97.59813 97.59813 97.59813 97.59812 97.59812 97.59812 97.59812
[280] 97.59812 97.59812 97.59812 97.59812 97.59812 97.59812 97.59812 97.59812 97.59812
[289] 97.59811 97.59811 97.59811 97.59811 97.59811 97.59811 97.59811 97.59811 97.59811
[298] 97.59811 97.59811 97.59811 97.59811
For sigma2 square
[1] 559.5878 525.6849 505.7973 488.0545 472.0863 458.8586 449.1209 442.7654 439.1009 437.3237
[11] 436.7687 436.9631 437.5961 438.4720 439.4702 440.5184 441.5732 442.6096 443.6137 444.5780
[21] 445.4991 446.3760 447.2092 447.9998 448.7495 449.4602 450.1336 450.7719 451.3767 451.9501
[31] 452.4935 453.0088 453.4975 453.9609 454.4006 454.8177 455.2135 455.5891 455.9457 456.2843
[41] 456.6057 456.9110 457.2010 457.4764 457.7380 457.9866 458.2229 458.4474 458.6608 458.8636
[51] 459.0564 459.2397 459.4140 459.5797 459.7373 459.8872 460.0297 460.1653 460.2943 460.4170
[61] 460.5337 460.6447 460.7503 460.8509 460.9465 461.0375 461.1241 461.2065 461.2850 461.3596
[71] 461.4307 461.4983 461.5627 461.6240 461.6823 461.7378 461.7907 461.8410 461.8889 461.9345
[81] 461.9779 462.0192 462.0586 462.0960 462.1317 462.1657 462.1980 462.2288 462.2581 462.2861
[91] 462.3126 462.3380 462.3621 462.3850 462.4069 462.4277 462.4475 462.4664 462.4844 462.5015
[101] 462.5178 462.5333 462.5481 462.5622 462.5756 462.5883 462.6005 462.6121 462.6231 462.6336
[111] 462.6436 462.6532 462.6622 462.6709 462.6791 462.6869 462.6944 462.7015 462.7083 462.7147
[121] 462.7209 462.7267 462.7323 462.7376 462.7427 462.7475 462.7521 462.7564 462.7606 462.7646
[131] 462.7683 462.7719 462.7754 462.7786 462.7817 462.7847 462.7875 462.7902 462.7927 462.7952
[141] 462.7975 462.7997 462.8018 462.8038 462.8057 462.8075 462.8093 462.8109 462.8125 462.8140
[151] 462.8154 462.8167 462.8180 462.8193 462.8204 462.8216 462.8226 462.8236 462.8246 462.8255
[161] 462.8264 462.8272 462.8280 462.8288 462.8295 462.8302 462.8308 462.8315 462.8321 462.8326
[171] 462.8332 462.8337 462.8342 462.8346 462.8351 462.8355 462.8359 462.8363 462.8366 462.8370
[181] 462.8373 462.8376 462.8379 462.8382 462.8385 462.8387 462.8390 462.8392 462.8394 462.8397
[191] 462.8399 462.8401 462.8402 462.8404 462.8406 462.8407 462.8409 462.8410 462.8412 462.8413
[201] 462.8414 462.8416 462.8417 462.8418 462.8419 462.8420 462.8421 462.8422 462.8422 462.8423
[211] 462.8424 462.8425 462.8425 462.8426 462.8427 462.8427 462.8428 462.8428 462.8429 462.8429
[221] 462.8430 462.8430 462.8431 462.8431 462.8432 462.8432 462.8432 462.8433 462.8433 462.8433
[231] 462.8434 462.8434 462.8434 462.8434 462.8435 462.8435 462.8435 462.8435 462.8435 462.8436
[241] 462.8436 462.8436 462.8436 462.8436 462.8436 462.8437 462.8437 462.8437 462.8437 462.8437
[251] 462.8437 462.8437 462.8437 462.8437 462.8438 462.8438 462.8438 462.8438 462.8438 462.8438
[261] 462.8438 462.8438 462.8438 462.8438 462.8438 462.8438 462.8438 462.8438 462.8438 462.8438
[271] 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439
[281] 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439
[291] 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439 462.8439
[301] 462.8439
2015年6月17日星期三
EM algorithm to impute missing value and underlying parameter
Genetic linkage data are from Rao, C. R. (1973), Linear Statistical Inference and Its Applications, 2nd Ed., New York: John Wiley & Sons. p368
x<-c(125,18,20,34)
n<-sum(x)
theta.0<-(x[1]-x[2]-x[3]+x[4])/n
theta.0
current_theta<-c()
new_theta<-c()
z11<-c()
z12<-c()
i<-1
current_theta[i]<-theta.0
new_theta[i]<-(x[1]*current_theta[i]+2*x[4]+x[4]*current_theta[i])/(n*current_theta[i]+2*(x[2]+x[3]+x[4]))
new_theta[i]
difference<-abs(new_theta[i]-current_theta[i])
difference
while(difference>0.00000001){
current_theta[i]<-new_theta[i]
new_theta[i+1]<-(x[1]*current_theta[i]+2*x[4]+x[4]*current_theta[i])/(n*current_theta[i]+2*(x[2]+x[3]+x[4]))
difference<-abs(new_theta[i+1]-current_theta[i])
z11[i]<-(0.5/(0.5+0.25*current_theta[i]))*x[1]
z12[i]<-((0.25*current_theta[i])/(0.5+0.25*current_theta[i]))*x[1]
i<-i+1
}
cbind(theta=current_theta,Z11=z11,Z12=z12)
Results: Z11 and Z12 are imputed missing values and thetas are mle estimate of parameter, 7 iterations will get 10^-8 accuracy.
theta Z11 Z12
[1,] 0.6251317 95.23332 29.76668
[2,] 0.6265968 95.18019 29.81981
[3,] 0.6267917 95.17314 29.82686
[4,] 0.6268175 95.17220 29.82780
[5,] 0.6268210 95.17207 29.82793
[6,] 0.6268214 95.17206 29.82794
[7,] 0.6268215 95.17206 29.82794
x<-c(125,18,20,34)
n<-sum(x)
theta.0<-(x[1]-x[2]-x[3]+x[4])/n
theta.0
current_theta<-c()
new_theta<-c()
z11<-c()
z12<-c()
i<-1
current_theta[i]<-theta.0
new_theta[i]<-(x[1]*current_theta[i]+2*x[4]+x[4]*current_theta[i])/(n*current_theta[i]+2*(x[2]+x[3]+x[4]))
new_theta[i]
difference<-abs(new_theta[i]-current_theta[i])
difference
while(difference>0.00000001){
current_theta[i]<-new_theta[i]
new_theta[i+1]<-(x[1]*current_theta[i]+2*x[4]+x[4]*current_theta[i])/(n*current_theta[i]+2*(x[2]+x[3]+x[4]))
difference<-abs(new_theta[i+1]-current_theta[i])
z11[i]<-(0.5/(0.5+0.25*current_theta[i]))*x[1]
z12[i]<-((0.25*current_theta[i])/(0.5+0.25*current_theta[i]))*x[1]
i<-i+1
}
cbind(theta=current_theta,Z11=z11,Z12=z12)
Results: Z11 and Z12 are imputed missing values and thetas are mle estimate of parameter, 7 iterations will get 10^-8 accuracy.
theta Z11 Z12
[1,] 0.6251317 95.23332 29.76668
[2,] 0.6265968 95.18019 29.81981
[3,] 0.6267917 95.17314 29.82686
[4,] 0.6268175 95.17220 29.82780
[5,] 0.6268210 95.17207 29.82793
[6,] 0.6268214 95.17206 29.82794
[7,] 0.6268215 95.17206 29.82794
2015年6月15日星期一
Power and sample size for Binomial distribution
power_n<-function(size){
p0<-51/235 #for calculate the critical region
c<-qbinom(p0,size, 1/6)
p<-seq(0.01,0.4,0.01)
pow<-1-dbinom(c,size,p)+dbinom(size-c,size,p) #the second part is very small can be omitted.
return(pow)
}
p<-seq(0.01,0.4,0.01)
plot(p,power_n(235),type="l",col="red")
lines(p,power_n(300),lty=2,col="blue")
lines(p,power_n(400),lty=3, col="black")
text(0.23,0.93,"Red, sample size =235")
text(0.23,0.94,"Blue, sample size =300")
text(0.24,0.95,"Black, sample size =400")
p0<-51/235 #for calculate the critical region
c<-qbinom(p0,size, 1/6)
p<-seq(0.01,0.4,0.01)
pow<-1-dbinom(c,size,p)+dbinom(size-c,size,p) #the second part is very small can be omitted.
return(pow)
}
p<-seq(0.01,0.4,0.01)
plot(p,power_n(235),type="l",col="red")
lines(p,power_n(300),lty=2,col="blue")
lines(p,power_n(400),lty=3, col="black")
text(0.23,0.93,"Red, sample size =235")
text(0.23,0.94,"Blue, sample size =300")
text(0.24,0.95,"Black, sample size =400")
订阅:
博文 (Atom)