https://documentation.sas.com/?docsetId=statug&docsetTarget=statug_rmstreg_details13.htm&docsetVersion=15.1&locale=en
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5379776/
Every time I think I know what's going on, suddenly there's another layer of complications.
2020年3月13日星期五
2019年11月9日星期六
BLUP for mixed model
http://rpubs.com/enwuliu/548305
This is R code for the example from the paper "That Blup Is a Good Thing: The Estimation of Random Effects.".
Robinson, George K. "That Blup Is a Good Thing: The Estimation of Random Effects." Statistical Science 6, no. 1 (1991): 15-32.
In the book Generalized Additive Models An Introduction with R, the second version, page 81 the function llm that solved the linear mixed model also used Henderson's equations but did not mention the equations.
mixed_model_blup.R
enliu
2019-11-10
Y<-matrix(c(110,100,110,100,100,110,110,100,100),nrow=9,ncol=1)
X<-matrix(c(1,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1),nrow=9,ncol=3)
Z<-matrix(c(1,0,0,0,0,0,0,0,0,
0,0,1,0,0,0,0,0,0,
0,0,0,0,0,1,1,0,0,
0,1,0,1,1,0,0,1,1),nrow=9,ncol=4)
R<-diag(1,nrow=9,ncol=9)
G<-diag(0.1,nrow=4,ncol=4)
A<-t(X)%*%solve(R)%*%X
B<-t(X)%*%solve(R)%*%Z
C<-t(Z)%*%solve(R)%*%X
D<-t(Z)%*%solve(R)%*%Z+solve(G)
E<-cbind(A,B)
F<-cbind(C,D)
M<-rbind(E,F)
t(X)%*%solve(R)%*%Y
## [,1]
## [1,] 210
## [2,] 310
## [3,] 420
t(Z)%*%solve(R)%*%Y
## [,1]
## [1,] 110
## [2,] 110
## [3,] 220
## [4,] 500
N<-rbind(t(X)%*%solve(R)%*%Y,t(Z)%*%solve(R)%*%Y)
solve(M,N)
## [,1]
## [1,] 105.6386574
## [2,] 104.2757378
## [3,] 105.4584366
## [4,] 0.3964857
## [5,] 0.5203875
## [6,] 0.7569272
## [7,] -1.6738004
/*********Another method from the Generalized Additive Models An Introduction with R, the second version, p81
llm <- function(theta,X,Z,y) {
## untransform parameters...
sigma.b <- exp(theta[1])
sigma <- exp(theta[2])
## extract dimensions...
n <- length(y); pr <- ncol(Z); pf <- ncol(X)
## obtain \hat \beta, \hat b...
X1 <- cbind(X,Z)
ipsi <- c(rep(0,pf),rep(1/sigma.b^2,pr))
b1 <- solve(crossprod(X1)/sigma^2+diag(ipsi),t(X1)%*%y/sigma^2)
## compute log|Z'Z/sigma^2 + I/sigma.b^2|...
ldet <- sum(log(diag(chol(crossprod(Z)/sigma^2 +
diag(ipsi[-(1:pf)])))))
## compute log profile likelihood...
l <- (-sum((y-X1%*%b1)^2)/sigma^2 - sum(b1^2*ipsi) -n*log(sigma^2) - pr*log(sigma.b^2) - 2*ldet - n*log(2*pi))/2
attr(l,"b") <- as.numeric(b1) ## return \hat beta and \hat b
-l
}
y<-matrix(c(110,100,110,100,100,110,110,100,100),nrow=9,ncol=1)
x<-matrix(c(1,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1),nrow=9,ncol=3)
z<-matrix(c(1,0,0,0,0,0,0,0,0,
0,0,1,0,0,0,0,0,0,
0,0,0,0,0,1,1,0,0,
0,1,0,1,1,0,0,1,1),nrow=9,ncol=4)
X1 <- cbind(x,z)
crossprod(X1)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 2 0 0 1 0 0 1
## [2,] 0 3 0 0 1 0 2
## [3,] 0 0 4 0 0 2 2
## [4,] 1 0 0 1 0 0 0
## [5,] 0 1 0 0 1 0 0
## [6,] 0 0 2 0 0 2 0
## [7,] 1 2 2 0 0 0 5
n <- length(y); pr <- ncol(z); pf <- ncol(x)
theta<-c(log(sqrt(0.1)),log(1))
sigma.b <- exp(theta[1])
sigma <- exp(theta[2])
ipsi <- c(rep(0,pf),rep(1/sigma.b^2,pr))
llm(theta,x,z,y)
## [1] 92.34967
## attr(,"b")
## [1] 105.6386574 104.2757378 105.4584366 0.3964857 0.5203875 0.7569272
## [7] -1.6738004
This is R code for the example from the paper "That Blup Is a Good Thing: The Estimation of Random Effects.".
Robinson, George K. "That Blup Is a Good Thing: The Estimation of Random Effects." Statistical Science 6, no. 1 (1991): 15-32.
In the book Generalized Additive Models An Introduction with R, the second version, page 81 the function llm that solved the linear mixed model also used Henderson's equations but did not mention the equations.
mixed_model_blup.R
enliu
2019-11-10
Y<-matrix(c(110,100,110,100,100,110,110,100,100),nrow=9,ncol=1)
X<-matrix(c(1,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1),nrow=9,ncol=3)
Z<-matrix(c(1,0,0,0,0,0,0,0,0,
0,0,1,0,0,0,0,0,0,
0,0,0,0,0,1,1,0,0,
0,1,0,1,1,0,0,1,1),nrow=9,ncol=4)
R<-diag(1,nrow=9,ncol=9)
G<-diag(0.1,nrow=4,ncol=4)
A<-t(X)%*%solve(R)%*%X
B<-t(X)%*%solve(R)%*%Z
C<-t(Z)%*%solve(R)%*%X
D<-t(Z)%*%solve(R)%*%Z+solve(G)
E<-cbind(A,B)
F<-cbind(C,D)
M<-rbind(E,F)
t(X)%*%solve(R)%*%Y
## [,1]
## [1,] 210
## [2,] 310
## [3,] 420
t(Z)%*%solve(R)%*%Y
## [,1]
## [1,] 110
## [2,] 110
## [3,] 220
## [4,] 500
N<-rbind(t(X)%*%solve(R)%*%Y,t(Z)%*%solve(R)%*%Y)
solve(M,N)
## [,1]
## [1,] 105.6386574
## [2,] 104.2757378
## [3,] 105.4584366
## [4,] 0.3964857
## [5,] 0.5203875
## [6,] 0.7569272
## [7,] -1.6738004
/*********Another method from the Generalized Additive Models An Introduction with R, the second version, p81
llm <- function(theta,X,Z,y) {
## untransform parameters...
sigma.b <- exp(theta[1])
sigma <- exp(theta[2])
## extract dimensions...
n <- length(y); pr <- ncol(Z); pf <- ncol(X)
## obtain \hat \beta, \hat b...
X1 <- cbind(X,Z)
ipsi <- c(rep(0,pf),rep(1/sigma.b^2,pr))
b1 <- solve(crossprod(X1)/sigma^2+diag(ipsi),t(X1)%*%y/sigma^2)
## compute log|Z'Z/sigma^2 + I/sigma.b^2|...
ldet <- sum(log(diag(chol(crossprod(Z)/sigma^2 +
diag(ipsi[-(1:pf)])))))
## compute log profile likelihood...
l <- (-sum((y-X1%*%b1)^2)/sigma^2 - sum(b1^2*ipsi) -n*log(sigma^2) - pr*log(sigma.b^2) - 2*ldet - n*log(2*pi))/2
attr(l,"b") <- as.numeric(b1) ## return \hat beta and \hat b
-l
}
y<-matrix(c(110,100,110,100,100,110,110,100,100),nrow=9,ncol=1)
x<-matrix(c(1,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1),nrow=9,ncol=3)
z<-matrix(c(1,0,0,0,0,0,0,0,0,
0,0,1,0,0,0,0,0,0,
0,0,0,0,0,1,1,0,0,
0,1,0,1,1,0,0,1,1),nrow=9,ncol=4)
X1 <- cbind(x,z)
crossprod(X1)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 2 0 0 1 0 0 1
## [2,] 0 3 0 0 1 0 2
## [3,] 0 0 4 0 0 2 2
## [4,] 1 0 0 1 0 0 0
## [5,] 0 1 0 0 1 0 0
## [6,] 0 0 2 0 0 2 0
## [7,] 1 2 2 0 0 0 5
n <- length(y); pr <- ncol(z); pf <- ncol(x)
theta<-c(log(sqrt(0.1)),log(1))
sigma.b <- exp(theta[1])
sigma <- exp(theta[2])
ipsi <- c(rep(0,pf),rep(1/sigma.b^2,pr))
llm(theta,x,z,y)
## [1] 92.34967
## attr(,"b")
## [1] 105.6386574 104.2757378 105.4584366 0.3964857 0.5203875 0.7569272
## [7] -1.6738004
crossprod function
http://www.endmemo.com/program/R/crossprod.php
R crossprod Function
crossprod()
function returns matrix cross-product.crossprod(x, y = NULL) tcrossprod(x, y = NULL)
x
: numeric matrixy
: numeric matrix, if y=NULL, y is the same as x...
> x <- matrix(1:9,3,3) > x
[,1] [,2] [,3] [1,] 1 4 7 [2,] 2 5 8 [3,] 3 6 9
> crossprod(x)
[,1] [,2] [,3] [1,] 14 32 50 [2,] 32 77 122 [3,] 50 122 194
> tcrossprod(x)
[,1] [,2] [,3] [1,] 66 78 90 [2,] 78 93 108 [3,] 90 108 126
2019年11月7日星期四
2019年11月4日星期一
Output variance -covariance matrix from Genmod
proc genmod data=outmi; model Oxygen= RunTime RunPulse/covb; ods output ParameterEstimates=gmparms ParmInfo=gmpinfo CovB=gmcovb; run;
2019年10月26日星期六
2019年9月16日星期一
Piecewise linear basis, tent function, B-spline in GAM
require(gamair)
data("engine")
engine
attach(engine)
plot(size,wear,xlab='Engine capacity',ylab='Wear index')
tf<-function(x,xj,j){
dj<-xj*0;
dj[j]<-1
approx(xj,dj,x)$y # approx return two subject, only return y here
}
tf.X<-function(x,xj){
##tent function basis matrix given data x
## and knot sequnce xj
nk<-length(xj);
n<-length(x)
X<-matrix(NA,n,nk)
for(j in 1:nk){
X[,j]<-tf(x,xj,j)
}
X
}
sj<-seq(min(size),max(size),length=6)
sj
X<-tf.X(size,sj)
X
b<-lm(wear~X-1)
b
s<-seq(min(size),max(size),length=200)
Xp<-tf.X(s,sj)
plot(size,wear)
lines(s,Xp%*%coef(b))
Xp
library(splines)
B=bs(size,knots=sj,Boundary.knots=c(1.420,2.980),degree=1)
B
b2<-lm(wear~B-1)
b2
s2<-seq(min(size),max(size),length=200)
s2
Xp2<-bs(s2,knots=sj,Boundary.knots=c(1.420,2.980),degre=1)
Xp2[,1:6]
plot(size,wear)
lines(s2,Xp2[,1:6]%*%coef(b))
B=bs(s,knots=sj,Boundary.knots=c(1.420,2.980),degree =1)
matplot(s,B,type="l")
data("engine")
engine
attach(engine)
plot(size,wear,xlab='Engine capacity',ylab='Wear index')
tf<-function(x,xj,j){
dj<-xj*0;
dj[j]<-1
approx(xj,dj,x)$y # approx return two subject, only return y here
}
tf.X<-function(x,xj){
##tent function basis matrix given data x
## and knot sequnce xj
nk<-length(xj);
n<-length(x)
X<-matrix(NA,n,nk)
for(j in 1:nk){
X[,j]<-tf(x,xj,j)
}
X
}
sj<-seq(min(size),max(size),length=6)
sj
X<-tf.X(size,sj)
X
b<-lm(wear~X-1)
b
s<-seq(min(size),max(size),length=200)
Xp<-tf.X(s,sj)
plot(size,wear)
lines(s,Xp%*%coef(b))
Xp
library(splines)
B=bs(size,knots=sj,Boundary.knots=c(1.420,2.980),degree=1)
B
b2<-lm(wear~B-1)
b2
s2<-seq(min(size),max(size),length=200)
s2
Xp2<-bs(s2,knots=sj,Boundary.knots=c(1.420,2.980),degre=1)
Xp2[,1:6]
plot(size,wear)
lines(s2,Xp2[,1:6]%*%coef(b))
B=bs(s,knots=sj,Boundary.knots=c(1.420,2.980),degree =1)
matplot(s,B,type="l")
订阅:
博文 (Atom)