Every time I think I know what's going on, suddenly there's another layer of complications.
2017年7月23日星期日
Spline regression
In regression modeling when we include a continuous predictor variable in our model, either as the main exposure of interest or as a confounder, we are making the assumption that the relationship between the predictor variable and the outcome is linear. In other words, a one unit increase in the predictor variable is associated with a fixed difference in the outcome. Thus, we make no distinction between a one unit increase in the predictor variable near the minimum value and a one unit increase in the predictor variable near the maximum value. This assumption of linearity may not always be true, and may lead to an incorrect conclusion about the relationship between the exposure and outcome, or in the case of a confounder that violates the linearity assumption, may lead to residual confounding. Spline regression is one method for testing non-linearity in the predictor variables and for modeling non-linear functions.
2017年7月13日星期四
2017年7月12日星期三
Adaptive procedures for non-parameter tests
x<-c(51.9,56.9,45.2,52.3,59.5,41.4,46.4,45.1,53.9,42.9,41.5,55.2,32.9,54.0,45.0)
y<-c(59.2,49.1,54.4,47.0,55.9,34.9,62.2,41.6,59.3,32.7,72.1,43.8,56.8,76.7,60.3)
drive4=function(x,y){
n1=length(x)
n2=length(y)
n=n1+n2
cb=(1:n)/(n+1)
const=(n1*n2)/(n*(n-1))#p550
p1=phi1(cb)
var1=const*sum(p1^2)
p2=phi2(cb)
var2=const*sum(p2^2)
p3=phi3(cb)
var3=const*sum(p3^2)
p4=phi3(cb)
var4=const*sum(p4^2)
vars=c(var1,var2,var3,var4)
allxy=c(x,y)
rall=rank(allxy)/(n+1)
ind=c(rep(0,n1),rep(1,n2))
s1=sum(ind*phi1(rall))
s2=sum(ind*phi2(rall))
s3=sum(ind*phi3(rall))
s4=sum(ind*phi4(rall))
tests=c(s1,s2,s3,s4)
ztests=tests/sqrt(vars)
list(vars=vars,tests=tests,ztests=ztests)
}
phi1=function(u){
phi1=2*u-1
phi1
}
phi2=function(u){
phi2=sign(2*u-1)
phi2
}
phi3=function(u){
n=length(u)
phi3=rep(0,n)
for(i in 1:n){
if(u[i]<=0.25){phi3[i]=4*u[i]-1}
if(u[i]>0.75){phi3[i]=4*u[i]-3}
}
phi3
}
phi4=function(u){
n=length(u)
phi4=rep(0.5,n)
for(i in 1:n){
if(u[i]<=0.5){phi4[i]=4*u[i]-3/2}
}
phi4
}
drive4(x,y)
v<-c(x,y)
sv<-sort(v)
q<-quantile(sv, c(0.05, 0.25,0.5,0.75,0.95))
U005<-c()
M05<-c()
L005<-c()
U05<-c()
L05<-c()
for(i in 1:30){
if (sv[i]<q[1]){L005[i]=sv[i]}
if (sv[i]>q[2]&sv[i]<q[4]){M05[i]=sv[i]}
if (sv[i]>q[4]){U005[i]=sv[i]}
if (sv[i]>q[3]){U05[i]=sv[i]}
if (sv[i]<q[3]){L05[i]=sv[i]}
}
L005
M05
U005
U05
L05
Um005<-mean(U005,na.rm=TRUE)
Um005
Mm05<-mean(M05,na.rm=TRUE)
Mm05
Um05<-mean(U05,na.rm=TRUE)
Um05
Lm05<-mean(L05,na.rm=TRUE)
Lm05
Lm005<-mean(L005,na.rm=TRUE)
Lm005
Q1<-(Um005-Mm05)/(Mm05-Lm005)
Q1
Q2=(Um005-Lm005)/(Um05-Lm05)
Q2
2017年6月30日星期五
2017年6月24日星期六
derivative of even and odd function
derivative of an even function is an odd function.
derivative of an odd function is an even function.
derivative of an odd function is an even function.
2017年6月23日星期五
2017年6月16日星期五
订阅:
博文 (Atom)