https://www.hsph.harvard.edu/donna-spiegelman/software/lgtphcurv9/
http://www.sciencedirect.com/science/article/pii/S0169260797000436
http://epidemiologymatters.org/epidemiology-we-like/methods/spline-regression/
Every time I think I know what's going on, suddenly there's another layer of complications.
2017年9月4日星期一
2017年9月3日星期日
Bayesian regression compare to other regressions
https://stats.stackexchange.com/questions/252577/bayes-regression-how-is-it-done-in-comparison-to-standard-regression
2017年8月31日星期四
Review some Monte Carlo theorems
1.
Suppose the random variable U has a uniform (0,1) distribution.
Let F be a continuous distribution function. Then the random variable X = F^(-1)(U)
has distribution function F.
Note: F(x)=(x-a)/(b-a), for uniform random variable at [a,b] interval. Here F(u)=u.
2.Monte Carlo Integration
generate x1, x2,...,xn from uniform(a,b), then compute Yi = (b - a)g(Xi). Then mean Y is a consistent estimate of the integral
Note: 1. definite integral is a number.
3. Accept-Reject Generation Algorithm
Suppose the random variable U has a uniform (0,1) distribution.
Let F be a continuous distribution function. Then the random variable X = F^(-1)(U)
has distribution function F.
Note: F(x)=(x-a)/(b-a), for uniform random variable at [a,b] interval. Here F(u)=u.
2.Monte Carlo Integration
generate x1, x2,...,xn from uniform(a,b), then compute Yi = (b - a)g(Xi). Then mean Y is a consistent estimate of the integral
Note: 1. definite integral is a number.
3. Accept-Reject Generation Algorithm
2017年8月30日星期三
Difference between indefinite and definite integrals.
Indefinite integrals are functions while definite integrals are numbers. This is quite useful when we calculate Bayesian estimator
2017年8月29日星期二
订阅:
博文 (Atom)