Proof:
Every time I think I know what's going on, suddenly there's another layer of complications.
2017年8月30日星期三
2017年8月29日星期二
2017年8月26日星期六
Different likelihoods
Maximum Likelihood
Find β and θ that maximizes L(β, θ|data).
Partial Likelihood
If we can write the likelihood function as:
L(β, θ|data) = L1(β|data) L2(θ|data)
Then we simply maximize L1(β|data).
Profile Likelihood
If we can express θ as a function of β then we replace θ with the corresponding function.
Say, θ = g(β). Then, we maximize:
L(β, g(β)|data)
Marginal Likelihood
We integrate out θ from the likelihood equation by exploiting the fact that we can identify the probability distribution of θ conditional on β.
2017年8月22日星期二
2017年8月13日星期日
Transform or link?
https://ecommons.cornell.edu/bitstream/handle/1813/31620/BU-1049-MA.pdf?sequence=1
2017年8月12日星期六
2017年8月6日星期日
ranking and empirical distributions
In the absence of repeated values (ties), the cdf can be obtained computationally by sorting the observed data in ascending order, i.e., . Then , where represents the ascending rank of . Likewise, the p-value can be obtaining by sorting the data in descending order, and using a similar formula, , where represents the descending rank of .
https://brainder.org/2012/11/28/competition-ranking-and-empirical-distributions/
https://brainder.org/2012/11/28/competition-ranking-and-empirical-distributions/
订阅:
博文 (Atom)