1.
Suppose the random variable U has a uniform (0,1) distribution.
Let F be a continuous distribution function. Then the random variable X = F^(-1)(U)
has distribution function F.
Note: F(x)=(x-a)/(b-a), for uniform random variable at [a,b] interval. Here F(u)=u.
2.Monte Carlo Integration
generate x1, x2,...,xn from uniform(a,b), then compute Yi = (b - a)g(Xi). Then mean Y is a consistent estimate of the integral
Note: 1. definite integral is a number.
3. Accept-Reject Generation Algorithm
Every time I think I know what's going on, suddenly there's another layer of complications.
2017年8月31日星期四
2017年8月30日星期三
Difference between indefinite and definite integrals.
Indefinite integrals are functions while definite integrals are numbers. This is quite useful when we calculate Bayesian estimator
2017年8月29日星期二
2017年8月26日星期六
Different likelihoods
Maximum Likelihood
Find β and θ that maximizes L(β, θ|data).
Partial Likelihood
If we can write the likelihood function as:
L(β, θ|data) = L1(β|data) L2(θ|data)
Then we simply maximize L1(β|data).
Profile Likelihood
If we can express θ as a function of β then we replace θ with the corresponding function.
Say, θ = g(β). Then, we maximize:
L(β, g(β)|data)
Marginal Likelihood
We integrate out θ from the likelihood equation by exploiting the fact that we can identify the probability distribution of θ conditional on β.
2017年8月22日星期二
2017年8月13日星期日
Transform or link?
https://ecommons.cornell.edu/bitstream/handle/1813/31620/BU-1049-MA.pdf?sequence=1
2017年8月12日星期六
2017年8月6日星期日
ranking and empirical distributions
In the absence of repeated values (ties), the cdf can be obtained computationally by sorting the observed data in ascending order, i.e., . Then , where represents the ascending rank of . Likewise, the p-value can be obtaining by sorting the data in descending order, and using a similar formula, , where represents the descending rank of .
https://brainder.org/2012/11/28/competition-ranking-and-empirical-distributions/
https://brainder.org/2012/11/28/competition-ranking-and-empirical-distributions/
订阅:
博文 (Atom)